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PROBABILISTIC VALUES FOR GAZ4ES*

by

Pradeep Dubey
Robert James Weber

Yale University

1. Introduction

Much attention has been given to methods for measuring the ‘~~~lue’~~

of playing a particular role in an n-person game. The study of various

values is motivated by several considerations. One is to determine an

equitable distribution of the wealth available to the players through their

participation in the game. Another is to help an individual compare his

prospects from participation in several games. A study of equitable distri-

butions may shed light upon a player’s prospects. However, a study of

individual prospects need not yield any information concerning the relative

fairness of various distributions of wealth.

The well-known Shapley value assigns to every n-person game an

n—vector of payoffs. Since this value serves as a method for determining

equitable distributions, it is natural that a defining property of the Shapley

value is its “efficiency” (or “Pareto optimality”); that is, the sum of

*The research reported in this paper was supported , in part, by grant

N00014-77-C-0518 from the Office of Naval Research.
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S the individual payoffs is constrained to equal the payoff achieved through

the cooperation of all of the players. However, when the players of a game

individually assess their positions in the game, there is no reason to

suppose that these assessments (which may depend on subjective or private

information) will be jointly efficient. Indeed, conservative assessments

may combine into a sub—efficient vector, while optimistic assessments may be

super—efficient.

This paper presents an axiomatic development of values for both

n—person and infinite (non-atomic) games. Our results will center around

the class of “probab~.listic ” values, which are defined (for finite games) in

the next section. Since this class of values includes both the Shapley value

and the also-familiar Banzhaf value, our work provides a suitable context

S for further study of both.

2. Definitions and Notation

For our purposes, we fix a particular set N = {l,2,...,n} of

players. The collection of coalitions (subsets) in N is denoted by

A game on N is a real-valued function v: -
~~ R which assigns a “worth”

S 
to each coalition, and which satisfies v(Ø) = 0 . Let 4’ be the collection
of all games on N (note that is a (2

n 
- 1)-dimensional vector space),

and let v be any game in I . The game v is monotonic if v(s) > v(T)

for all S ~ T ; v is superadditive if v(S ii T) > v(S) + v(T) whenever

S 
S n T = . The class of all monotonic games is denoted by Tnt, and the

class of all superadditive games by A . For future reference , note that

~~t. and 4 are cones in b that is , each is closed under addition ,and

under multiplication by nonnegative real numbers. Also note that neither

5- 
.:._ -, . . — - :  - - -

~~~~ -,. •. 
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class contains the other.

-
S 

If the game v takes only the values 0 and 1 , then v is

simple. If v(S) = 1 , then S is a winning coalition; otherwise S is

a losing coalition. ,
~~ 9fl~

, , and denote, respectively, the class

of all simple games on N , those which are monotonic, and those which are

superadditive. For simple games, note that superadditivity implies mono-

tonicity; hence, ~~~ ~~ 4 . (Some authors prefer to restrict the term

“simple game” to elements of ~~ ; the more general games are then

called “0—1 games.”)

Two special types of games will play an important role in our work.

For any nonempty coalition T , let vT 
be defined by V

T
(S) = 1 if

S ~ T , and 0 otherwise. Also, let V
T 

be defined by 
T
(S) = 1 if

$ T , and 0 otherwise. Let 
~~~~~

= 1V ,1~: ~ ~ T c N) , and 
~~~~

= {
~T
: ~~~ T C N)

any game in is a carrier g~ame. Observe that every game in or ~~~. is

monotonic , superadditive, and simple. We shall occasionally refer to the game

v~ defined by ~0
(S) 1 for all nonempty coalitions S . This game is

monotonic and simple, but is not superadditive.

For any collection C of games, and for any player i € N

a value for i on 7 is a function P~: 
~~ 

-
~ R . As we have previously

indicated , the value ~ . (v) of a particular game v represents an assess-

ment by i o. his prospects from playing the game. This definition stands

somewhat in contrast to the more traditional definition of a “group value”

which associates an n—vector with each game. The

construction of group values from our individual values will be treated

later in this paper.

Recently, Blair jl~ and Dubey [3~ have discussed a family of values

which arise from individual perceptions of the coalition—formation process.

1L ~ .. . 
- —~~~~~~~~ -- .=-.—~~~~ -
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(Earlier discussions of related matters appear in [4) and [5).) Fix a player

i , and let {p~: T C N\i} be a probability distribution over the collection

of coalitions not containing i . (Incidentally, notice that we shall often

omit the braces when writing one-player coalitions such as {i} .) A value

~~~

. for i on 5 is a probabilistic value if, for every v E

= ~ p,~[v(T U i) — v(T)1
TCN\i

Let i view his participation in a game as consisting merely of joining

some coalition S , and then receiving as a reward his marginal contribution

v(S u i) — v(S) to the coalition. If, for each T c N\i , p
~ 

is the

(subjective) probability that he joins coalition T , then 4 (v) is simply

his expected payoff from the game.

Both the Shapley and Banzhaf values are instances of probabilistic

values. The Banzhaf value (for an individual player i ) arises from the

subjective belief that the player is equally likely to join any coalition;

that is, p
~ 

= 1/(2f h ) for all T c N\i . The Shapley value arises from

the belief that the coalition he joins is equally likely to be of any size t

(0 < t < n — 1) , and that all coalitions of size t are equally likely;

i 1 1 tJ • (n — t — 1)’that is, p = — = ________________. for all T C N\i , where
T n (fl l’~ n!

~~~t J

t jTj

In the following sections, we shall investigate several reasonable

conditions which a value might be expected to satisfy. We will find that the

only values which satisfy these conditions are closely related to the prob-

abilistic values. 

—- - - - - - ---~~~~=~~~~~~~~~~~~~~~~~~ -.~—- ~~~~ - - 5 - - - - -~ .--—- -.- - - - - - --
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3. The Linearity and Dummy Axioms

Given a game v , and any constant c > 0 , consider the game cv

defined by (cv) (S) = c v(S) for all S C N . It seems reasonable to assume

that such a rescaling of the original game would simply rescale a player’s

assessment of his prospects from playing the game. Similarly, let v and

w be games, and consider the game v + w defined by (v + w) (S) = v(S) + w(S)

for all S c N . A rational player, facing the latter game, might well con-

sider his prospective gain to be the sum of his prospective gains from the

two original games.

Consider a cone of gaines in . A linear function on ~~
‘ is a

function f:~~ ~ R satisfying f(v + w) = f(v) + f(w) and f(cv) = c f(v)

for all v,w E ~ and c > 0 . Let 
~~~

. be a value for i on - The

preceding comments are reflected in the following criterion.

Linearity Axiom. 
~~~

. is a linear function on

Since .4 , ,~I, and J are all cones in 4, the following
theorem applies to a value on any of these domains.

THEOREM 1. Let 
~~~

. be a value for i on a cone of games. Assume that

~~~

. satisfies the linearity axiom. Then there is a collection of constants

{a
T
: T c N} such that for all v €

= 
~~ 

aT
v(T)

Tc N

--—--—-5-5- ~~~~~~~~~~~~~~~~~~~~~
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Proof. 4) . has a unique linear extension to the linear subspace

C spanned by 1 . This extension can in turn be extended to a linear

extfunction 4 on all of , by defining 4)
ext

arbitrarily on a basis of the orthogonal complement of

For any nonempty T C N , define the game WT 
by wT(S) = 1 if S = T

and 0 otherwise. Then {WT
: 0 ~~ T C N) is a basis for 4. , and 4)

ext

is uniquely determined by its values on this basis. Any v 
~ 

can be

written as v = ~ v(T) W
T 

since 4)
ext is linear,

O�TCN 
1

ext r ext(v) = 
~. 

v(T) 
~~ 

(w~) .

0~TCN

However, 4) . is simply the restriction of 4)
ext to ~~~~ . Therefore, upon

ext . .
taking aT 

= 4) . (w
T
) for all nonempty T C N , and defining a

0 
arbitrarily,

we obtain the desired result. D

A player i is a dummy in the game v if v(S U i) = v(S) + v(i)

for every s c N\i . This terminology derives from the observation that such

a player has no meaningful strategic role in the game; no matter what the

situation, he contributes precisely v(i) . Therefore, the following criterion

seems reasonable. Let 4) . be a value for i on a collection ,7 of games.

Dummy Axiom. If i is a dummy in v c , then 4)1 (v) = v(i)

This axiom actually has two aspects. While specifying the prospec—

tive gain of a dummy in a game v , it implicitly states that 4) . and v

are measured in common units , under a common normalization. These aspects

are exploited separately in the prnof of the following result. Recall that

(. denotes the collection of carri~r games. 

—- — - - - • ---• - •- •- ~~~~~~~•—— —~~~~~~~~~~~—--—---~~~~~~~~~
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THEOREM 2. Let be a value for i on a collection of games , defined

by 4).(v) = 

~ 
aTv(T) for every v E . Assume that ~ contains

TCN

Then there is a collection of constants {p
T
: T C N\i} satisfying 

~~ 

p~ = 1
TCN\i

such that for every v €

= 

~ ~~~~~~ 
U i) - v(T)]

- - 
1. TCN/i

Proof. First, note that for any nonempty T C N\i , player i is

a dummy in V
T 

€ . Therefore, 4)i(vT
) = v

T(i) = 0 . It follows that

S 4)i(vN\i) = aN + aN\. = 0 . For inductive purposes, assume it has been shown

that aTU~ 
+ aT 

= 0 for every T c N\i with IT !  > k > 2 . (The case

k = n — 1 has just been established.) Take any fixed S ~ N\i with

IS ! = k - 1 . Then

= 

TDS 
aT = 

{ 
TCN\i Tui + aT)} 

+ (a
8 . + a8

)

T~S

= a  . + a  = 0  ;
SUi S

the next-to-last equality follows from the induction hypothesis, and the last

from the dummy axiom.

Theri fore, aT . + aT = 0 for all T C N\i with 0 < IT ! < n - 1

For every suck: T , define = aTU . = a
T 

. Also, define p
0 

= a. . Then

for every v

4) (v) ~ a~v(T) = 

~ 
pT

[v(T u i) - v( T) ]
TCN TCN\i 

- 5- - ---. - — - - -- . - - -~~~~~~~~ - —-— - - -
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Consider v. € . Player i is a dummy in this game; indeed,

every player is a dummy in v~ . Therefore, 4).(v.) = v . (i) = 1 . But, since

v.(T u i) - v .(T) = 1 for every T C N\i , the expression in the preceding

paragraph yields 4).(v.) = 
~~ 

p~ . 0
TCN\i

When this theorem is taken in conjunction with the preceding one, we

obtain the following result.

THEOREM 3. Let be a value for i on 1i , ‘) ~t5, or 4 . Assume that

4) . satisfies the linearity and dummy axioms. Then there is a collection of

constants {p
T
: T c N\i} satisfying 

~ ~T 
= 1 , such that for every game

TCN\ i

v in the domain of 4) .

= 
~ PT

E V ( T  U i)- v(T)]
TCN\i

4. The Monotonicity Axiom

Let v be any monotonic game. A player i , facing the prospect of

playing this game, may be uncertain concerning his eventual payoff. However,

for every T C N\i , v(T u i) - v(T) > 0 ; therefore player i knows, at

the least, that his presence will never “hurt” a coalition. This motivates

the following criterion. Let be a value for i on a collection of

games.

Monotonicty Axiom. If V € ~ is monotonic, then 4 ) . ( v )  > 0 . -

The following proposition will be of value.
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. -~ Proposition. Let 4). be a value for i on a collection of games.

- 

- Assume tha t there is a collection of constants CPT: T 
C N\i} , such that for

all

= 
~ P,~,[V(T u i) — v(T)]

— TcN\i

S Further assume that ~~
‘ contains the game VT 

f o r  some T C N\i (note that

T may be empty) , and assume that 4). satisfies the monotonicity axiom. Then

0

Proof. The game V
T 

is monotonic. Therefore , 
~~~~~~ 

= 

~T 
> 0 . 0

4,
The collections of games Q and each contain ~ , and also

contain . On the other hand, contains , but not . Therefore,

we have the following theorems.

THEOREM 4. Let 4). be a value for i on or ~fl,. Assume that 4).

satisfies the linearity, dummy, and monotonicity axioms. Then 4). is a

probabilistic value. Furthermore, every probabilistic value on 4 or
satisfies these three axioms.

Th EOREM 5. Let 4). be a value for i on . Assume that 4). satisfies

the linearity, dummy , and monotonicity axioms. Then there is a collection of

constants (P T
: P c N\i) satisfying 

~ ~T 
= 1 , and p

~ 
> 0 for all

TCN\i

nonempty T c N\i , such that for every game v e 4 

- - ______ - -  - - 
- -
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= 

~T
1’
~~

’ U j) - v(T))
— TcN\i

Furthermore, every such value on .1 satisfies these three axioms .

S 
-

- In the case of values on 4 or 
~ft, , we thus have a natural axiomatic

characterization of the probabilistic values. However, for values on J we
~S are unable to rule out the possibility that p

0 
< 0 . This phenomenon is

investigated in the next section.

5. Values for Superadditive Games

It is natural to seek an explanation of the preceding results. A

value for a class of games yields a relative evaluation of one’s prospects

from playing the various games. If the class of games is sufficiently rich,

the only evaluation functions satisfying certain reasonable criteria are the

probabilistic values. Why, if one’s consideration is restricted solely to
F

superadditive gaines, does the class of reasonable evaluation functions

broaden in the indicated manner? We shall attempt to provide a rationale.

Consider any particular game v . A player i , faced with the

prospect of playing this game , may seek to determine the amount of gain which

he is “guaranteed ,” in the sense that he contributes at least this amount

— to any coalition which he joins. In the case where v is superadditive,

this “floor” to his expectation is precisely v(i) , since v(T U i) - v(T) > v(i)

for all P c N\i (and since , when T = 0 , his marginal contribution is

exactly v(i)). Taking this amount as assured , the player will then strive

to achieve as great a reward as he can, in the new game ~~
(1)  defined by

A 
_______________________________________________ - -  — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
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1~
(
~

) if i j S
v

I v (S) - v(i) otherwise

(This is the game that he perceives himself to be playing , after having

mentally “withdrawn” the amount v(i) from the game.) However, any

gain from this new game is uncertain, and depends upon such factors as

the bargaining ability of the player. Hence, the twe amounts under con—

sideration, v(i) and his gain from playing ~~
(1)  

, are measured respec-

tively in “certain” and “uncertain” units.

Assume that the player ’s attitude toward risk is such that one

unit of uncertain gain is worth y units of certain gain to him. (Hence,

y < 1 corresponds to risk—aversion , and y’ = 1 to risk—neutrality.)

Further assume that he evaluates his prospects, from any game v with

v(i) = 0 , in terms of a probabilistic value 4).(v) . Then, his evalua—

S tion of any superadditive game v, expressed in units of certain gain, will be

~~~ . (v) = -y 4). (vW ) + v(i)
i 1

One would expect an aversion to risk to limit a player ’s options.

That such is the case is the impact of the following theorem. Let P

be the set of probabilistic values on 3 , and for any y > 0 let

V(y) ={
~~~

: 
~~ 

is a value on 4 , and for some 4) .  € P , ~. (v) = y •

+ v ( i )  for all v € 4 } . This is the set of all evaluation functions

on 4 arising from the considerations discussed previously, when y

represents player i’s attitude toward uncertain gain. S

THEOREM 6 . If 0 < y’ < y , then V(y’) ~ V(y) . Furthermore,

V(l) = P

~

_ S _ 5 -  - —~~~~~
— 5 - ;~~

5-
~~

5-.—
~~

— - -~~ -S- S . 
~~~~~~~~~~ -
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Proof. If 0 < y ’ < y , then any 
~~~

. € V(y’) corresponds t~

some 4)’ e P , which is in turn associated with a probability distribution
1

{PT
: T C N\i} . But then, let € P be associated with the probability

distribution {q,~: T c N\i} , where q~ = L.. 
~T 

for all nonempty

T C N\i , and q = 1 - q,~ . It follows that ~ .(v) = y • 4).(v
(1) ) + vU )

for all v € , so 
~~~

. € V (y) . Hence, V(y’) C V (5-y)

Consider any probability distribution (PT
: T C N\i} such that

p
0 

= 0 . Then, if 4) .  is the associated probabilistic value on 4
= y . 4)~~ (v

(1)
) + v(i) defines a value 

~~~

. € V (y) which is not in

V(y’) for any y’ < y . Hence the indicated containment is strict.

Finally, observe that, when y = 1 , every value in

Vty ) = V ( l)  is of the form

(i)
= 4).(v ) + v (i )

= { 
~ 

p
T~~~~

T U i) - v(i) - v(T)] } + v( i)
S TcN\i

= 
~~~~~~ 

U i) - v ( T ) ]
TCN\i

= 4). (v)

S so V(1) = P . 0

Another point of view is offered by this theorem. If a player

wishes to evaluate his prospects from superadditive games, he can

satisfy our criteria of rationality while still basing his evaluation in

part on his posture toward risk. However, these same criteria, when

- - - _~~~~~~~~~ _ _ 5 - _ _ _ __ _ _ _ _ ——.~~~. ~~~~~~~~~~~~~ - -
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applied to the evaluation of broader classes of games, force the player

into a posture of risk-neutrality . It would be of interest to learn

precisely from where this consequence of risk—neutrality arises.

6. Values for Simple Gaines

Simple games, particularly those which are monotonic, are often

used to represent political games. A value for a player may then indicate

the player ’s perceived political power in various gaines. Under this inter-

pretation, the dummy and monotonicity axioms remain reasonable. However,

the linearity axiom does not seem to apply ; indeed, the sum of simple

games is generally not simple.

An alternative axiom has been suggested by Dubey [21 . For any

gaines v and w , define v V w by (v V w)(S) = max (v(S),w(S)) and

define v A w by (v A w) (S) = mm (v(S),w(S)) , for all S C N . If

v and w are simple, then v V w and v A w are also simple. A coali-

tion is winning in v V w if it wins in either v or w ; it is winning

S in v A w if it wins in both . Therefore, each coalition wins as often

in v and w together as it does in v V w and v A w together.

Let be a value for i on a collection 
~7 

of games.

Transfer Axiom. If v , w , v V w , and v A w are all in , then

+ 4). (w) = 4).(v V w) + 4).(v A w)

The name of this aio.om is motivated by the following observation.

The game v A w arises from v when all of the coalitions which win only

in v are made losing ; v V w arises from w when these same coalitions 

5 , 5  - ---- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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are made winning. Hence , v A w and v v w arise from v and w when

winning coalitions are “transferred” from one game to the other,

We require several definitions. Let v be a simple game. A

S minimal winning coalition in v is a winning coalition with no proper

subsets which are also winning; a hole in v is a losing coalition with a

winning subset. Note that the monotonic simple games are precisely those

without holes.

Let 1 be a collection of simple gaines, and let v be any game

in 7 . We define two types of operations which can be performed on v

Let T be a minimal winning coalition in v . Define the game ~
_T 

by

-T . -T -Tv (S) = v(S) for all S ~ T , with v (T) 0 ; v arises from v

by the deletion of a minimal winning coalition. On the other hand, let

+T
P be a hole in v , and define the game v by v (S) = v(S) for all

S ~ T , with v
+T(T) = 1 ; ~

+T arises from v by the insertion of a

(new) winning coalition. The collection ~~ 
is closed under deletion and

insertion if these operations, applied to any game in , give rise only

to other games in 7 . In particular , 4 , , and are all closed

under deletion and insertion.

The following result is an analogue of Theorem 1.

THEOREM 7. Let 7 be a collection of simple games which contains e and
is closed under deletion and insertion . Let 4), be a value for i on

and assume that 4).(V
N
) = 0 .~~~ Finally, assume that 4). satisfies the

aRecall that the game VN 
is defined by 

~N
(S) = 0 for all S c N . This

game is contained in every nonempty collection of games which is closed

under deletion, and every player in N is a dummy in the game.
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S transfer axiom. Then there is a collection of constants (a
T
: T C N }

such that, for all games v €

= a
T
v(T)

TCN

Proof. We claim that 4). is determined on all of 
~~~

‘ by its

values on ~~~~~~. In order to verify this claim, first consider the collection

‘7M 
of monotonic games in 7 . This subcollection of is also closed

under deletion and insertion , and contains ~~~~~~. Since V
N 

e , the claim

is trivially true for this game. Assume that the claim has been verified

for all games in which have at most k winning coalitions (the only

game in ,7~ 
with just one winning coalition is vN

)
~ 

and let v e be any

game with k + 1 winning coalitions. Let P be any minimal winning

coalition in v , and consider the games v~ , ~
_T 

, and V
T 

A ~
_T 

The

first is a carrier game, while the latter two are both in and have

no more than k winning coalitions. Since V
T 

V ~~~ = v , we have from

the transfer axiom that 4).(v) $i (vT
) + 4).(v

T
) - 4)i(v

T 
A v

_T
) . It

follows from the induction hypothesis that 4).(v) depends only on the

values of on ~~~~~~ . This verifies the claim throughout . (Observe
that the game vN 

requires special treatment; since it has no winning

coalitions, it is not covered by the induction.)

Next, assume that the claim holds for all games in 7 which have

at most k holes (the case k = 0 has j ust been treated) , and let

v € 7 be a game with k + 1 holes. Let P be any hole of maximum

cardinality , and consider the games V
T , v A V

T 
= V

T 
and v v v~ = ~

+T

The first of these is in ~~~~~, the second is in , and the third is in 
S
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and has only k holes. Since 4 ) . ( v )  = 4).(v V V
T
) + 4).(v A v~ ) -

it follows (by induction ) that 4)~~
(v) depends only on the values of 4) .

on ~~~~~. This completes the verification of the claim.

We have just seen that 4). is determined by its values on

u n
S Since* is a basis for , there is a unique linear function

on which coincides with 4) . on ~~~~, . This linear function must

satisfy the transfer axiom, because (v V w) + (V A w) = V + W for all v

u nand w in . Therefore , 4) .  and 4) . must coincide on . Since

lin4) . can be expressed in terms of its values on the basis {WT
: 0 ~~ T C N

of fr (see the proof of Theorem 1) , it follows that 4) . has the desired

form. 0

We can now invoke Theorem 2 and the proposition concerning mono-

tonicity, in order to obtain analogues of Theorems 4 and 5.

THEOREM 8~ Let 4) . be a value for i on 4’ or . Assume tha t

satisfies the transfer, dummy , and monotonicity axioms. Then 4).

is a probabilistic value. Furthermore , every probabilistic value on 4
or ~~~ satisfies these three axioms.

THEOREM 9. Let 4) . be a value for i on 4 . Assume that q .

satisfies the transfer , dummy , and monotonicity axioms. Then there is S

a collection of constants {p~ :T C N\i} satisfying 
~ 

p,1~ = 1 , and
TCN\ i

*Ass~~~ that ~ 
c~v~ 0 . Then for any nonempty T c N , ~ cS 0

Ø~sc’r
Solving this system of equations successively for I T I  = l.2,...,n yields

C
T 

• 0 for all T c N . Hence the - 1 games V
T 

are linearly m dc-

pendant in 4 .
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- S p
~ 

> 0 for all nonernpty T L N\i , such that for every game v € 4

= p~ [v(T U i) - v(T)1
TcN\i

*
Furthermore, every such value on satisfies these three axioms.

The discussion of the previous section, interpreting the class

Sof values on ~O,  applies with equal strength to ,O

7. Symmetric Probabilistic Values

A probabilistic value assesses the relative desirability of being

a particular player in various games. At times , one might also want to

compare the desirability of playing various roles within a particular game.

Such comparisons can be facilitated by the use of a collection 4) = (4)~
,.. ., 4) )

of values, with 4).(v) representing the value of being player i in game S

v . Such a collection is a group value.

Let iT = (ir (l),...,rr(n)) be any permutation of N . For any

S C N , define irs {7 r w:  i € s} . The game n v is defined by

(liv) (Ir S) = v(S) for all S c N . (liv arises upon the re-labelling of 
S

the players 1,. .. ,n with the labels l r ( l ) , . . . , i r ( n ) . )  Let be a collec-

tion of games with the proper ty that , if v € .7 , then every liv € 7
such a collection is syimnetric.

Let 4) 
~
4)1’•~~

•’4)n~ 
be a group value on ~~~~~~~. For the comparison

of roles in a game to be meaningful , the evaluation of a particular position

should depend on the structure of the game , but not on the labels of the

players.

A 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

- S
~~~~
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S Symmetry Axiom. For every v € and every permutation 11 of N

and for every i € N , 4).(v) = 4) (.)(Irv)

Observe that each of the classes 4, ~4, ~~~~~ and

contains both and ; also each of these classes is symmetric.

Ther~fore , the following theorem applies to values on any of these classes.

THEOREM 10. Let 7 be a symmetric collection of games, containing and

. Let 4) = 

~~~~~~~~~~ 

.. ,4)~
) be a group value on , such that for each

i € N  and V E X ,

= p~~[v(T U i) - v(T)]
TCN\i

Assume that 4) satisfies the symmetry axiom. Then there are constants

{ }
fl_ l such that for all I € N and T c N\i , p~ = p .

t t O  T ITI

Proof. For any i e N , let T1 and T2 be any two coalitions

in N \i satisfying 0 < 1T11 = ~T2I < n - 1 . Consider a permutation it

of N , which takes T1 
into P

2 
while leaving i fixed. Then

2. A 1.
p,~, = 4). (V,,, ) = 4) . (v,,, ) = p , where the central equality is a consequence

i 

~u ~ 2

of the symmetry axiom.

Next , let i and j be distinct players in N , and let T be

a nonempty coalition in N\(i,j} . Consider the permutation Ti which

interchanges i and j while leaving the remaining players fixed. Then

and 
~~~~~~ 

= 4)~ (v~) = p~ , where the central equality

is again a consequence of the symmetry axiom. Combining this with the

- - - 5 - -  
_ _ _ _  

S _
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previous result , we find that for every 0 < t < n — 1 there is a Pt

such that = for every i € N and T C N\i with j T j  = t .

Again , for distinct players i and j , let Ii interchange i

and j while leaving the remaining players fixed. Then P~~\i 
= 4)i (vN

) 
S

= P~\~ . Let 
~~~~ 

be this common value. Then for all i € N,

~N\i ~n-l

Finally, for each i € N

n-l
i r 1 r n—l

p,~~= l -  L 
~T

1 L 
~ 

P
~TCN\i t=l

T�Ø
this last expressi’on is independent of i

Therefore, p~ 
= p

~ 
for all i,j € N . Letting p0 

be this common value

completes the proof of the theorem. 0

We shall return to this result later in the paper , when we

briefly consider the Shapley value.

8. Efficiency without Symmetry: Random-order Values

Consider a collection 4) = (4)~ ,. . . ,4 ) ) of values , all on the

domain ~7 , one for each player in N . Depending on the game v under

consideration, the players’ assessments, as a group, of their individual

prospects may be either optimistic or pessimistic; that is, ~ 4)
~
(v) may be

i€N

either greater than or less than v (N) . However , if the group assessment

is neither optimistic nor pessimistic , the payoff vector 4)(v) = (4)1(v),...,4)
(v))

may be taken as an equitable distribution of the resources available to the

grand coalition N . Therefore , it is of interest to study those collec—

tions of values 4) = 

~
4)l’•~~~

’4)n~ 
which meet the following criterion.

5 - - . - - -  - -~~~ - - - ~~ 5- ———~~~~~~~ -~~- - -  - - —~~~~~~~~ - S
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Efficiency Axiom. For every v € 7 , ~ 4).(v) = v(N)
i€N

A group value satisfying this axiom is said to be efficient~

Any efficient group value 4) provides a fair distribution scheme

for the games in 17 . The following theorem characterizes all such

group values .

THEOREM 11. Let 4) = 

~~l
’•

~ 
. , 4) ) be a group value on ~7, defined for all

i € N and all v € 7 by 4),(v) = ~ p~ [v(T u i) — v(T)] . Assume
TCN\i

that 7 contains and C, . Then 4) satisfies the efficiency axiom

if and only if 
~ P~~\i 

= 1 , and 
~ P~~ \ i  

= 
~

‘ p
~ 

for every nonempty
i€N i€T

T~~~N

Proof. For any v € 
~~~~

, let 4)N
(v) = ~~ 4)..(v) . Then

i€N

= ~ p~~[v(T u i) - V(T)J
iEN TCN\i

~: v(T)
{ ~ P~~~. 

- 
~~

TCN i€T ~ j/T

It is immediately clear that any 4) which satisfies the conditions of the S

theorem is efficient; that is, 4)N
(v) = v(N) .

For any nonelnpty T C N , consider the games v,~ and V
T

Since v
t
(S) - VT

(S) for all S ~ T , and v
T
(T) = 1 while ~~(T) — 0

it follows from the preceding equation that

i j
- 4)N

(’V
T
) 

~~~~ 

1’T\i 
- 

j~T 
~T

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--

~~~~~~~~~~~~~~~~~ -~~~
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However, v
T
(N) - v~ (N) is 1 if P = N , and is 0 otherwise. Therefore,

if $ satisfies the efficiency axiom, then the indicated conditions must

also hold. 0

S 
It is conceivable that the efficiency of a group value is an

artifact, existing in spite of the fact that the players have grossly

different views of the world. However , we can define a family of group

values , each of which arises from a viewpoint common to all of the players . - S

Let {r
~
: Ti € II) be a probability distribution over the set II of

nI orderings of N ; r
~ 

is the probability associated with the ordering

it = ( j
r
,... , i )  in which the k-th player is player 1k For any ordering

it = (j 1, . . . ,i5
) , let it = {i

l
,...,ik l

} be the set of predecessors of

in it . A random-order group value ~ = ~~~~~~~~~~~ on .7
defined by

r i. i
= L r~~[V(T1 U i) — v(lr )]

lTdI

for all i c N and all v E 7 .
An interpretation of this definition can be given. Assume that

the players have as their goal the eventua l formation of the grand coalition ,

N . Further assume that they see coalition-formation as a sequential

process : given any ordering Ti of the players, each player i joins with

his predecessors in it , making the marginal contribution v(lI
i 

u I) — v (7T~
5-)

in the game v . Then, if the players share a common perception {r
~
: ii € ii}

of the likelihood of the various orderings , the expected marginal contribution

of a player is precisely his component of the random-order group value.

LA~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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S THEOREM 12. Let ~ = 
l’~~~

’
~ n~ 

be a random-order group value on 7
S 

associated with with the probability distribution {r
Ti
: It € fl} . There

exists a collection 4) = 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

of probabilistic values on , such

that 4).(v) = ~ . (v) for all i € N and all v € . Furthernr.,re, 4)

satisfies the efficiency axiom.

Proof. For any i € N and v € 7

i . i
= r 1~[ v( iT  U ~.) — v(7r ) ]

•ii€I1

= r1~ 
(v(T U I) — v(T)]

TCN\i {n€fl :nr1T}

S Define , for all i € N and all T C N\i

1 r
L r

~
~1TdI :it~~T}

and let 4) = (4) ]~ . . . , 4) ) be the associated collection of probabilistic

values. (It is easily verified that, for each i € N , {p~ : T c N\i}

is a probability distribution.) Clearly, 4) =

Observe that , for any v €

~ ~ , (v) = ~ r [v(7T
1 

u i) — v (Tr
t ) )

i€N i€N lTErr

= r
~ 

(v(1T1 u i) — v(111)I
m ElT icN

~ 
r
~ 

v (N) = v(N) .

m cfl 

-~-—~~~~ - S~~ S~~~~~~~~
• 5- -
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Therefore , since 4) = , it follows that 4) satisfies the efficiency

axiom. 0

The preceding theorem shows that every random-order value is an

efficient probabilistic (group) value. The converse result also holds.

THEOREM 13. Let 
~ 

= 

~
4)l’” ’4)n~ 

be a collection of values on

defined for all i € N and all v € 7 by 4) . (v) = ~ p~ [v(T u i) - v(T)]
TCN\i

i iAssume that 
~ ~N\i 

= 1 and that 
~ P~~ . = L p~ for all nonempty

i€N i€ T j~ T

T N . Then there is a random-order value ~ = 

~~~~ 
,~~ ) on ~~~~~ such

that ~ . (v) = 4).(v) for all i € N and v €

Proof. For any i € N and T C N\i , define Ad (T) = 
~
j ~T

and A(i;T) = p~/A
d

( T )  . Consider any ordering 71 = (i
1
, . . . ,i )  € U , and

define

p
1
l•~~(j ;{j })•~~(j ;{j j }) A(i ;{i

1
,...,i . ~~)

It is easily verified , by repeated summation, that

r
71 

= 

i~ =l 121h1} ~~~~~~~~~~~~~ 
~~~~~~~~~~ 

(j i )  
= 1

so {r
~~

: 
~ 

III is a probability distribution.

Let i be the random—order value associated with (r n : It € 10

Since

~~~ , Cv) r
71 
[v(T U i)  — v( T) ]

TrN\i {m€fl :it~~T}

-5 S— ~~~~~~~~ ._—~
--—- — —5 - ~— 5-—5__•_~~~~ S~~~~~~~~~~

:.. ___— S— .—— 5- 
S
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it will suffice to show that for all i € N and P C N\i

1 -

p =  )
~ r

71
{ir :lti T}

Observe that

~ r
~T

=
~~~ 

...
{Tr :711=T} 1t~~

T i
~~~1

E T\ {i
~~

} i1ET\ {i
~~

,. . . , i2
}

r~~ .

i
~~~2~

TU{i) i
~ +3~

TU{i,it+2
} i

~~~
TU1:i,i

~ +2 ,....i 1
} ‘l’”~~”

i i
t t-l

~~~~~~ ~T \ { i i }
— 

A
d(T) i

~~
EP A

d (T\{i }) i
~~1

ET\{i
~
} Ad(T\~it

,i~~j})

1
1 

A ( .i ~TUU })
i1
€T\{i

t
,. ..,i2

} i
~÷2~

TU{i} t+2

A ( i ;T U 
~~~~

lt+2~~~~ 
,i

l
J)

i~~~Tu { 1, it+2 , • • • , in l
}

This summation can be carried out explicitly. Proceeding from right to left,

the f i rs t  n - (t + 1) sums each , in turn , have value 1 . Continuing

inductively, each sum of the form ~ is preceded by a factor
ik ETk k k

with denominator A’
~

(Tk
) = 

~~ p.~, . Therefore , from the hypothesis of the
k

theorem, it f ollows that the expression simplifies to p~ , as desired. 0

Combining the preceding results, we obtain an interesting obser—

vation . A collection of individual probabilistic values is efficient for

A ___  ___  
-
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all games in its domain precisely when the players ’ probabilistic views

of the world are consistent; that is, only when the various {p~: P 
C N\i}

arise from a single distribution {r
71
: it € TO

9. The Shapley Value

S A standard characterization of the Shapley (group) value is as

the only value which satisfies the linearity, dummy , symmetry , and efficiency

S axioms (6] . From our previous results, we can quickly prove the uniqueness

of the Shapley value, and simultaneously obtain a simple derivation of the

explicit formula for the Shapley value. Traditional proofs center around

S 

a consideration of the carrier games in e. ~~ appears that our considera—
A

tion, as well, of the games in e simplifies matters.

THEOREM 14. Let 4) (4)~
,. . . ,

~~~ 
be a group value on #~~~, ~~~~~, or

Assume that each 4). satisfies the linearity and dummy axioms, and that 4)

satisfies the symmetry and efficiency axioms. Then for every v in the

domain of 4) , and every i € N

r t I ( n— t — l ) !
= — [v(T U 1) — v(T)]
TCN\i 

S

where t generically denotes the cardinality of T

Proo f. From Theorems 3 and 10, it follows that there is a sequence S

such that each 4 ) . ( v )  = 
~ ~t

1”
~
T U i) — v ( T ) ]  . Specializing

TCN \i

Theorem 11 to the symmetric case, we must have 
~ P~~ . = np 

-1 = ~ , and
i€N 1 fl

~k. 
_______ _ _  

_ _— _,__d fl 
- -•
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~ P~~ 
= tp~_1 = ~ 

p
~, 

= (n — t)p
t 

for all nonempty T N
jET j~T

Consequently ,

n-l 1

~n-l 
= 

n-l ~n-l 
= 

n

and

ln—l n—l
S ~~t ~t t—l~~t—l

for all 1 < t < n - 1 . It follows that, for each t , [5;1]p t =

tI(n — t — 1) 1
and therefore, Pt 

= ni 0

It may be noted that, upon replacement of the linearity axiom

with the transfer axiom , we obtain a similar theorem characterizing the

Shapley value on , ,fl,, , or S

I

—~~~~~~~ —— - - -- - - - ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~
- .~~~~:.. —
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10. Interlude

In the preceding sections, we have given two interpretations to a

group value $ = 
~~~~~~~~~~~~~~ 

. , 4 ) )  on a collection 7 of games . The use of 4)

to indicate an equitable distribution of resources seems reasonable only

when 4 is efficient. However, the interpretation of 4) as an evaluation

function , to be used by a single player comparing various positions within

a game, is broadly applicable.

Just as the prospects of various positions can be compared, the

prospects of the coalitions in a game can be studied. For any particular

game v € 0’ , we can define a function 4)v : 2
N + R , which assigns to

each coalition S its total value 4)v ( S) = ~~ 4).(v) . Note that this
i€ S

set—function is additive; i.e., if S n T = 0 , then 4)v(S) + 4)v(T) = 4)v(S u T)

An important class of games corresponds to economic markets

involving a large number of traders, in which each trader holds only a

negligible proportion of the total resources of the economy. Such a situa-

tion can be conveniently represented by a non-atomic continuum of traders.

Since each player is a dummy in the corresponding game, the study of

individual values is of little interest. However, the relative prospects

of various coalitions (i.e., various segments of the market) can be repre-

sented by an additive set-function on the continuum of players. This

representation is investigated in the next section. Again, an axiomatic

characterization of probabilistic values is our central result.

.
5- - . 

~~:__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-.~~~~: 
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11. Values of Non-Atomic Games

We now turn to investigate the implications of dropping the

efficiency axiom in the context of non-atomic games. The mathen~atical

setting for the study of such games has been spelled out in [11]. For

completeness ’ sake we will quote f reely from [11] and first recall several

basic definitions and results.

Let {i, ~‘} be a measurable space, isoxnorphic* to the closed unit

interval with its Borel subsets . The term “set function ” will mean a

mapping v of ~ into the reals such that v(Ø) = 0 . In the interpre-

tation , a set function is a game , I is the player set , and is the

c-algebra of coalitions. A set function v is monotonic if S ~ T implies

v (S) > v ( T) , and is of bounded variation if it is the diff erence of two

monotonic set functions. The collection of all set functions of bounded

variation forms a vector space over the reals and will be called By

FA is the subspace of BV consisting of bounded , finitely additive ,

— signed measures on {i ,e} and CA is the set of members of FA that

are countably additive .

Let Q be any subspace of BV . The set of all monotonic set

functions in Q will be denoted . A mapping of Q into By is

positive if it maps into BV~

Let ~~ denote the set of all isomorphisms of fi ,~~.} onto

*Two measurable spaces are called isomorphic if there is a one—to—one

function from one onto the other that is measurable in both directions.

hiLi . .  .



—‘-5-— ~~~~~~~

-29—

itself. Each 0 in a induces a linear mapping 0
~ 

of BV onto itself,

defined by (0
~
v)(S) = v(0(S)) . A subspace Q of BV is symmetric if

= Q for all 0 in a
We are now prepared to define a “value.”* Let Q be a symmetric

subspace of BV . A value on Q is a positive linear mapping fl from Q

irlto** CA such that

(A) For all 0 in £ and v in Q , we have

fl(0~v) = O
~~ (flv)

(B) For all v in CA n Q

fl(v) = v

(A) clearly corresponds to the symmetry axiom for values of

finite games. (If we had defined (0
~
v)(S) = v(9~~

5- (S)) , then (A)

would have taken the form 0~~( f l ( O~ v ) )  = r~v . The correspondence with

the symmetry axiom in the finite case would then have been more transparent.

However, the terminology used above is more in keeping with Ill).)

The monotonicity axiom is captured in the requirement that

a value be a positive mapping. (B) has been discussed in (11] (pp. 15-16,

pp. 293—4) under the name ~Projection Axiom.” It may be viewed as the

*We depart from the usage in (11], where values are required to satisfy the

“efficiency axiom ,” (fly) (I) = v(I) , instead of (B).

**The effect  of considering FA in place of CA , either here or in

(B) , is discussed in Remark 3 of Section 12.

S ~~~~~~~~~~~~~~~~~~~~ ~___ ~~~~~~~~~~~~~~~~~~~~
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non-atomic analogue of the dummy axiom for finite games. Consider a finite

additive game v: 2N + R , i . e . ,  v(S U T) = v(S) + v(T) whenever S n P = 0

Then each i € N is a dummy in v , hence 4)1(v) = v(i) , or equivalently

$(v) = v

Our focus in this paper will be on a particular subspace of BV

called PNA , which also plays a crucial role in [11] - First let us

introduce the variation norm on BV given by

H vH  = inf (u(I) + w(I)]

where the infimuni is taken over all monotonic set functions u and w such

that v = u - w . BV is a Banach space with this norm (see* Proposition

4.3); FA and CA are closed subspaces of BV (Proposition 4.4). Denote

by NA the subspace of c~ consisting of non-atomic measures.

The subspace pNA is the subset of BV spanned by all powers

of measures in NA . The word “spanned” is used here in a topological linear

sense; i .e . ,  the space spanned by a subset of BV is the closure (in the

variation norm) of the set of all linear combinations of elements of that

subset. pNA is clearly closed and symmetric. It is also internal

(see Proposition 7.19);

i.e., H v I I = inf [u(I) + w(I)) , where u and w are

members of PNA
+ (and not just of BV

+
) such that v = u - w . A fortiori,

pNA is reproducing , i.e. , pNA = pNA~ - pNA~ . Therefore , by Proposition

4.15, any positive linear operator from pNA into BV is continuous. In

particular, if fl is a value on pNA , then T) is continuous or ,

A11 unattributed results are from I l l ]

— 5—- - — — - - S - .:— —, 5 55- __SS - 5~ —- 5-.———— . ~~~~~~~~~~~~~~~ =55-5=5~_25~
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equivalently* it has finite norm (where the norm of r~ is

sup { I In(v ) H/ Hv H v € pNA , v ~

Of particular interest are those games v in pNA of the form

v = f p [i.e., v(S) = f(p (S)) for all S € 
~~~, 

] , where p is a

finite-dimensional vector of measures in NA
+ 

, and f is a real-valued

function that is continuously differentiable** on the range of p , with

f(O) = 0 - (Note that by Lyapunov ’s theorem the range of p is compact

and convex.) For the proof that f o 
~ € pNA for all such p and f

see Proposition 7.1.

We will first focus our attention on games of the form f o p

where p is one—dimensional. Without loss of generality, {i,e} will

henceforth be taken to be the closed unit interval [0,1] with its Borel

subsets. A will stand for the Lebesgue measure on I . Given two

measures p and ~ on I recall that p is absolutely continuous

with respect to F , written p , if p (S) = 0 whenever c(S) = 0

If p << ~ , then by the Radon-Nikodym theorem there exists a measurable

function f: I + ~R such that p (S) = ffd~ for all S € . f is called S

S
the Radon-Nikodym derivative of p with respect to ~ and is denoted

dp/d~ . If it happens that, for some M < ,jdp/d~~< M almost everywhere

on I , we will say that dP/d~ is bounded.

*See, for example, Theorem 5.4 of (12]

**For a precise definition, see page 22 of [11]

IL A 
-—-——-—-~~~~~~~
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We introduce some more notation:

NA~~= ( p c N A ~ : p ( I ) = l }

(Thus NA~ is the set of all probability measures on I .)

NA~bd = € NA~ ~ << x , dp/dA is bounded I

C~ = {f: I : f(O) = 0 and f is continuously differentiable)

1 +  1 +C0NA1 = {v € pNA : v = f o p where f € C0 , ).i € NA
1
}

The following two propositions pave the way towards characterizing

all values on pNA

Proposition I. Let fl be a value on pNA . There exists a unique measure

e NA~bd such that for any p € NA~ and any f € C~ 
S

1
(*) fl(f ° p )  = (1 f’d~)p0

where f’ denotes the derivative of f

Proo f. First take p to be the Lebesgue measure A . We can

show, by exactly the same arguments as in the first part of the proof of

Proposition 6.1, that r~v coincides on any two sets of equal A—measure S

for any v € pNA , i.e., (flv) (S) is a function of A(S) alone. Write

__-
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(fl(f o A ) ) ( s )  = g
f
(A(S)) . Then from ~(f ° A) € CA it follows that gf

is bounded on I , and is additive, i.e., g
f
(x
1 
+ x

2
) = g

f
(x
1
) + g

f
(x
2
)

whenever x
1
,x

2 
and x

1 
+ x

2 
are in [0,1] . This implies that

g
f
(x) = g

f
(l)x

Consider the mapping A: C~ -+ I~ given by:

A(f) = g
f
(l)

Note that g
f
(l) = (fl(f o A))(I) . Since fl is linear on pNA , it is

clear that A is a linear functional. It will be helpful to view A

with its domain transformed. To this end, let C be the set of all con-

tinuous real-valued functions on [0,1] . Both C and C~ are vector

spaces over the field of real numbers. 
S

Define d : C~ 
-P C as follows:

(d(f))(x) = f’(x) ,

S for f € C~ and x € I . It can be easily verified that d is a vector

space isomorphism~ and that d 1 
is given by

= I
for f C  and x c i

That is, d is one-to-one and onto, and linear in both directions. 

- -  5-- ~~~-5- 5~~~ .- S-,-—- -—- - -“-- - -55-5 —- - - - —-.-SS’ __
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Now define It : C -P R by

= A(d’
~~(f))

for any f € C . Clearly It is linear, since A and d 1 are linear.

Moreover A is positive, i.e., A ( f )  > 0 whenever f > 0 . To check

this let f > 0 . Then f = d
1(f) is monotonic on I , i.e., f(x) > f(y) S

whenever x > y . Hence , the game f o A is a monotonic set function.

But since fl is a positive mapping, fl(f o A) is also a monotonic function.

This implies that A ( f )  = g
f
(l) = (fl(f o A)) (I) > 0 , which easily

translates into: A(f) > 0 . Hence , A is a positive linear functional

on C.

Then by the Riesz representation theorem* there exists a unique,

finite, positive measure on fi ,~~ } such that

A(f) = fd~

This says that

= 

1 

f’d~ .

Recalling that (r)(f 0 A))(S) = g
f
(1) A (s) , we have verified the

formula (*) for the case when P is the Lebesgue measure A . (However,

we have not yet shown that ~ E NAtbd .)

when p ~‘ A , let be the automorphism of {i,~~ } such that

*See , for example , page 34 in [12]

- -— S _______ -- 
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= A . (Lemma 6.2 assures us that such a 0 exists.) Then

0 j i )  = f o (
~~ I.1) = f ~ A , and so, by what we have just proved,

o p) = fl(f o A) = (f
1
f’d~ )A . Hence, by the symmetry axiom (A’,

0

-‘—1 — 1 ”r)(f o p) = 
~~ ~~n (~ ° ~~) = 

~~ 
fl0~~(f  o

1

= g;i{{ f f’d~}A}

= [ J fl d~ Jo *
l
A

=

We shall now proceed to demonstrate that ~ is the type of measure

claimed, i.e., ~ e NA~bd . First suppose, to the contrary, that ~ has

atoms. Let x € [0,1] be any atom of ~ . Construct

the sequence* {~ } C C defined by
n neN

[O,x — 1] or if x €  [x+ ~~,l]

1 
, if y € (x — —,x] fl [0,1]

fl
n

1(x + — ) — y  1S 
, if y € (x ,x + n [o,l~

n

S Denote d
1(f

5
) by 

~n 
Then { f }~~~ c . Consider the sequence of

* N is the set of positive integers.

- - -~~~~-— ‘--- 5 -~~_T ._ - 5 -  - ;S -~~~~~~S —-
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games in pNA , where ~~ = 

~n 
° A . Clearly v is monotonic,

hence ~v ( f  = f (1) < -
~~ . On the other hand, since liv is also

monotonic, I Inv H = (fly ) (I) = f
1
f’d~ = f’f d ~ > ~ (x) . Therefore ,

IInv~H
S 

—> ~ , which contradicts the fact that Ti is continuous on pNA

We conclude that ~ must be non—atomic.

We now show that sup {~~(S)/X(S) : S € ~~~ , A ( S ) > o} is finite.

If not, there is a sequence of Borel sets {S} N 
such that

~
(S
n
)/A (S

n
) > n + 1 and A(S ) > 0 , for all n . Since the Lebesgue

measure is regular, for any S
n there exists a countable collection of disjoint

open intervals, 
~
I
~).N 

, such that Y = U 1
r~ 

~ 
S
n 

and A (Y\S ) I X(Sn)/fl
jEN

Now ~(Y) /A (Y) > n , hence for some j~ we must have 
~
(I”

~
)/A (I’

~~
) > n

Let I~~ = (ct
n
$
n) and put ct~ max {Oa

n ..(B — cx ) } ,

~ mm {l,8~ + (
8 - a 

)}

Define ~ g I c C as follows:
n neN

n f l
1 if y c [ a ,8]

y - c X  - —n n
n -n 

if y € [a ,a )
a -a

8 - y  . n~~nif y € (8 ,8 ] , S

0 otherwise

Again consider the sequence {Vn
}
n~~ 

in pNA given by V~ g o ~ where

g t51~~~(g) . Arguing as before we derive :

_ _  _ _  S 
_ _____  _  _- - - — ——--- 5-
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1

Il v~f l  = g (l )

JI fl v~ I I = J g d~ > ~ (I 1
*
) . But then,

1kv II ~~~~~ ~~~~~ n2
— 

n > 3 — =  > —>~~~n n 1 ~~n + l
‘~~ n M X ( I ’

~ ) + (
8 — a [A(I .~

)1(l + —)
-

- 5 :3* n

a contradiction. This proves that there exists an M , 0 < M < ~

such that sup {~~( S)/ A ( S)  : S E e-, A ( s )  > 0) < N . Therefore, for any

C > 0 and any S € C. , A(S) < elM implies ~(S) < e . Then, ~ << ~ , and

therefore d~/dA exists. Clearly, d~/dA > 0 almost everywhere.

S 
We assert that also d~/dA I M almost everywhere. If not, let

T = {t € I :(d~/dX)(t) > M} , with A (T) > 0 . Then, ~(T) = J(d~/dA)dA > MA (T)
(j

a contradiction. This shows that d~~dA is bounded,

Finally, it remains to show that ~(I) = 1 . Take the game f ° A

where f(x) = x for x e I . Then, by (B), we must have ~(f ° A )  = A

On the other hand, we have shown that T 1( f  o A )  = Cf 
t
f’d~)A = (f

’d~ )A
0 0

= (~~( I ) ) A . Hence ~(I) = 1 . 0

Proposition II. For each ~ c NA~bd , there is a unique value fl~ on pNA

which admits of the representation below. Let v in pNA be such tha t

there exist p , f , and U as follows:

(1) p is a finite dimensional vector of non-atomic measures with

range H , f is a real-valued function on H and continuously

differentiable there with f(0) = 0 , U is a compact convex

neighborhood in H of the diagonal (O,p (I)) , and 

- S-- - - 5 Sp, r .-_ _ 5_ S _ S_ - 5 S
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v(S) = f(p (S)) whenever p ( S )  € U

Then, for all S € C ,

(ii) (r3~v)(S) =

where 
~~(s) is the derivative of f in the direction p (S)

Proof. Fix ~ € NA~bd , and let v, p , f , U be as in (i).

Define the signed measure \)
f ~ 

by

V
f~~~

(S) J f p (s ) tP~~~~~~~t

It is easy to verify the countable additivity of \)
f 
~ 

from the explicit

formula. This is carried through for the case = A in the beginning of

the proof of Proposition 7.6.  An exactly analogous argument can be used

when ~ ~ A

Let I = S~ U S be a Hahn decomposition (see Theorem 644 in

(12]) of I with respect to Vf,~ 
i.e., \)

f 
~ 

is nonnegative on 5’
~
’ and

its subsets , nonpositive on S and its subsets , and S~ n S

S Put y = p (S~) and b = p (I) , so p(S ) = b - y . Then as shown** in

the proof of Proposition 7.6,

I l v i l  > f f (tb) I dt + f t fb_y (t~~~
dt

*when p (S) — 0 we define the integral to be 0

**In (11] it is proved that I l v i > jf
l
f (tb) dt~ + ~f

lf b...y (tb ) dt~ 
S

But their proof in fact shows the stronger inequality we have used.

~~k1 — -  ——-—- --55-— - - 
~~~~~ ‘~ r - ~~~~~~ 

- 
~~~~
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B~t then, choosing M so that d~/dA < N almost everywhere, we get

(iii) M l l v l l  ~ M J l f y(th)ldt + M J l f b y
(th)Idt

S~~ J lf~(t~~k~ t) + I b_y (th~~~~
t)

~ ~J f y
(tb)d~ (t) + 

~J f b Y
(t
~~
a
~~
t

+
= 1’

~f p ~~ 
) l  + I~

)f ,~(5 ) I
= II v f,~ l I

Let D be the linear subspace* of set functions v in pNA that

can be represented by some p , f , and U as in (i). For every such

v , p , f , U define

5 

•v=v f~~

We need to check that this is an admissible definition, i.e., that it does

not depend on the choice of p , f , and U . Indeed , this too has

been done in Proposition 7.6 for the case ~ — A . When ~ A no

difficulty arises and the same proof may be invoked.

D contains all the linear combinations of powers of measures in

NA , so it is dense in pNA . (iii) shows that I I~
(v) Il/ I l v i i  < M for

all V D . Furthermore 4~ maps D into CA , which is complete.

Therefore, there is a unique extension of c~ to a continuous linear operator

*Thjs subspace is named Q in [11]. 5

~

—

~ 

S
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from pNA to CA . Call this extended operator fl~ . It is the only

operator on pNA which satisfies (ii) for all v as in (i), i.e., all

v in D.

To conclude the proof, we must verify that is a value; i.e.,

is positive and satisfies (A) and (B) . To check (A) (sytluuetry) , consider

v = f o p € C~NA~ . Then for each 8 € , € NA~ , hence

0
~
v = f o (O

~
1J) € C~NA~ . Also

= [ J f
’d~]8~ P

= o4 J f ’d~
}
~

= O~T~V

Since both and 
~~ 

are continuous on pNA , it follows that

- O
~ fl~ is a continuous linear operator on pNA that vanishes on

C~NA~ . Therefore, it vanishes on the (topological linear) span of

1 +  -CØNA1 , which is pNA . This proves symmetry.

For any Q c BV , let us denote Q the closure of Q in the

variation norm. Let P be the space of all polynomials in non-atomic

measures. Whenever we write v = f o p € P , we take f to be a polynomial

and p a vector of measures in NA . Clearly, P pNA .

An alternative definition of the variation norm will be useful in

the sequel. Let ~2 be a nested chain of sets 0 = C S
1 

C • • C S
m 

I , 5

and let v c BV . Put I lv i i  = 
~~ Hs - - v (S. ) J . Then

5 1 1— ].1=1

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =_~~~~~ 5-_5-5S_ 
—— 
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Proposition 4.1 establishes that I l v i i  = sup I lv i l~ where the

supremum is taken over all chains ~

To check that fl~ satisfies (B), the projection axiom, first

consider v f o p € CA 0 P . Without loss of generality (see page 42

of Eli]), we can assume that H , the range of p , is full-dimensional.

We assert that f must be linear. Pick any x c H and consider

the ray R = {tx : t > 0 , tx € H )  . Let t
1
x and t

2
x be in R

x

such that (t- + t )x € R . Since R C H , there is an S € e such1 2 x x

that p (S) = (t
1 
+ t

2
)x . By Lyapunov’s theorem (applied to p on S ),

for some T C S , p (T )  = t
1
x . Hence p (S\T) = t

2
x . But f o p c CA

and therefore

f((t
1 
+ t

2
)x)= (f o

= Cf ° p) (T) + (f 0 p) (S\T)

= f(t
1
x) + f(t

2
x)

Thus f is additive on R ; clearly it is bounded . Consequently f is

linear on R for any x E H ; i.e., f is homogeneous of degree one on

H . Now consider Vf , the gradient of f . Due to homogeneity, Vf is

constant on each ray Rx Since these rays all contain the origin, Vf

in fact must be constant throughout H . It follows that f(x) = c~x

for all x c H , where c is this constant gradient vector.

Now,
1

(r~~v)(S) = f f~ (5)
(tP(I))d~ (t)

= c p ( S ) f d~ (t)

= f(p(S))

v(S)

Thus , fl~v - v  for all V :  C A n P .
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S To complete our verification of (B), it will suffice to show that

CA 0 P = CA 0 pNA • Since CA 0 P = NA and P pNA , we need only

shcw that any limit of non-atomic set functions is non-atomic. Suppose,

to the contrary , that some v E pNA has an atom x in I , i.e., for

some S C i\Ix } , v(S u {x}) ~~~ v(S) . Take {v}
N 

C P such that

v -
~ v . Clearly each v is non-atomic , so v (S u {x}) = v (S) for all

n n n n

S n . But then, considering the chain {Ø,s,s u {x},I} , we get

l iv — v i i  > I (V — v) (S U i x) )  — Cv — v) CS) In n n

= v ( S) — v(S u { x } ) I

i.e., II V - v i i  —~~--> 0 , which is a contradiction.

Finally , we must show that fl~ is positive on pNA . We will

begin by showing this on D , i.e., fl~ (D~) C CA~ . Suppose V € D~ and

(r~ v) CS) < 0 for some S € C . Let v(T) = (f o 
~
) CT) whenever p (T) € U

where p , f , U are as in (i) • Then since

(fl~v)CS) = 
I f u S t P 1 d ~

(t ,

must be negative for all t in some subset of (0,1] of

positive c—measure . Select a particular such t , satisfying 0 < t < 1

(Such a t always exists because ~ is non—atomic.) It can be shown,

using Lyapunov ’s theorem, that for any 0 < T < 1 - t there exist two

disjoint sets and TT in C such that

- 5 — - -  _ _
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= tp(I)

p (T
1
) = Tp(S)

(For a proof of this see Note 2 of Section 7 in (11].) Put = R.r U T
1

For t sufficiently close to 0 , we have p(RT
) and p(P ) in U , and

v(P
T
) = = f(tp(I) + Tp ( S ) )

~ f ( tp ( I ) )  + Tf p (S ) (tP(I))

< f(tp(I))

= f ( p ( R
1

) )

= v (R )

contradicting that v €

It is straightforward to show that if I 1v5 - v ii —> 0 and if

is monotonic for every n , then V is monotonic. This implies thai- :

(a) CA+ is closed since CA is closed; (b) D
+ 

C ( D )  . Since

- - 
fl~ 

is continuous, we immediately get fl~ (D) C CA~ from rl~ (D
+) C CA

+

We wish to show that fl~ (D)~~) C CA~ . (Note D pNA .)

For each k > 0 and each in with 1 1 m , define a measure

A k 
by

Ak(s) [m_ 1 
,

where A is Lebesgue measure . I.et A
k 

be a vector measure, of dimension

k - 
-

2 , defined by

k k kA — (A 1,... 
~ k~

- - —- - 

2 

- - S  ~~~~~~~~~~~~~~~~~
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k
the range of Ak is the closed unit cube R.~ = [0,11

2 
. Denote by A

- the set of all set functions of the form f o Ak , where k > 0

and f is continuously differentiable on R.K 
and takes the value 0

at the origin. Obviously, A C D

Let v € (A)+ . Then there is a sequence {v I C A such that
fl fl€~~~

l iv  
— v i i  —> 0 . Since A is internal (Lemma 7.18), we can write

V
n 

= u - sq , where u ,w £ A+ and I 1v
1.j I 

- (u (I )  + w ( I ) )  —> 0

Consider l iv  - v = li v - Cu - w ) . This bounds the variation of
n n n

— U + W on the chain {Ø,i} ; hence, v ( I )  — u (I) + w (I)  —> 0

Subtracting these two limiting equations, we obtain (li v II - vCI)) - 2w (I) -~
- 0

But I lv ~l I I l v i i = v(I) , so w (I) -
~ 0 . Therefore, li v — u~~ 

—> 0

and v € A4

Clearly C (A) 4 , and we have just shown that (A) C

Hence, (A)+ = A
+ 

. Since A C D , we have A+ c D
+ 

. Consequently

(recalling that r3~ (D
4
) c CA

4
) , rl~ ((A)~~) C CA4 . Take any v € CD)

4

As shown in the proof of Proposition 7.19 in (11], there is an automorphism

O of {i,C-} such that O
~
v £ (A)~ . But then fl~~(v) = e:

1n~
(e
~
v) € e;~ cA~ = CA~

This proves that r~~( (D) 4) C CA~ , i.e., that fl~~ is positive on pNA . 0

At last we come to the main theorem in this section.

THEOREM 15. The set of values on pNA is the set {r~ : € NA~bd}

where is .~s in Proposition II

Proof. We verified in Proposition II that every fl~ 
is a value

on pNA . Now suppose ~ is a value on pNA . By Proposition I there

exists a unique ~ € NA bd such that

~~~~~~~~~~~~ - - -~ -- - -
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S 

4 ) ( f  o p) = [ J f ’d~
}
~

1 + - 1 +
for any f o 

~ ~ 
C0

NA
1 . 4) and fl~ coincide on C0

NA
1 , which spans

pNA . Since 4) is continuous on pNA , and since CA is closed, there is

• a unique linear extension of 4) from the domain C~NA~ to the domain

spanned by C~NA~ ; i.e., to PNA . That this extension coincides with

is obvious. 0

12. Remarks

(1) The non-atomic values tr~ I~ £ NA~bd} derived axiomatically

on pNA can also be obtained from aymptotic considerations. This reveals

the sense in which they approximate values of finite games, and was carried

out by one of us in [3). The results in [3) help to justify the term

“probabilistic value” for . It is shown there that for any v £ pN.A

and any sequence {v~}~~~ of finite games that “converges” to v in an

appropriate sense, we have

— — >  fl~~V

where v is a game with in = m (n) players, and 4)~v is the additive

set-function derived from the symmetric probabilistic value with

p (F~) = f
i
st(l — s ) d ~ (s) for 0 1 t I m — 1 . In this sense,

is a probabilistic value for a game with a continuum of players.

-— ~~~~ - - 5- - - -~~ - , - - - - -5 ~~~~- --S ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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(2) Although the probabilistic values fl~ 
are in general not

efficient, it is worth noting that for non-atomic market games* (with

transferable utilities) they do all become efficient; indeed they coincide

with each other, and in particular with the Shapley value , which is

always efficient. To see this, first consider a market game v of finite

type. As shown in [3), v can be approximated by a sequence v = 
n~ 

° p € D

where each f is homogeneous. But n v = lim fl v . Since f is
n ~~n n

homogeneous, 
~~(s) is constant along the diagonal E0 ,p (I)] . Therefore,

by formula (ii) of Proposition II, fl~v is independent of E c NA~bd , and

then so is ~~~ . If the market game v is not of finite type, we may

view it as a limit of market games of finite type (with the number of types

increasing to infinity) as in [11) . Again a limit argument shows that

is independent of F~ . By Theorem J, the upshot of this is that all the

-values are in the core of any market game, and coincide with the competitive

payoff of the market. Even in the case of non-transferable-utility markets,

we may define “ -value allocations” exactly as the (Shapley) value

allocations were defined in [13]. Again it follows from the results in

[13] and our preceding arguments that allocations, for any ~ € NA~bd

coincide with the competitive allocations of the market.

(3) There are two ways in which FA could have been used in

place of CA as the range of the value operator ot in the projection axiom

(B). If FA were used for the range, leaving (B) unchanged, our results

would be unaffected ; it is easy to deduce that the effective range would

still be just CA. We think that the projection axiom, on all of FA , is

a consequence of Proposition II .  However , we have no proof of this as yet.

•For their definit ion see Chapter 6 of I l l ]
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(4) Earlier in this paper it was shown, for the finite-player

case that the Shapley value is characterized uniquely by the linearity,

dummy, symmetry, and efficiency axioms. For the non-atomic case, we can

obtain a similar result. The natural non-atomic analogue of the efficiency

- axiom is

- 
(C) (fly) CI) = v(I) , for all v £ Q

I
Of the values on pNA considered in Proposition II only 

~A 
satisfies this

additional axiom.

To see this, recall that for any value

o p ) ) ( S )  = 
I f P s (tP ( 1

~~~~t

for f o 
~ 

€ C1NA+ C D . In particular, for any [a,8] C I , consider

j  
V
n 

= g o A , where g is defined as in the proof of Proposition I

(with = ~~ 
~n = 8 ; also set & = &~ , 8 = 8

n
) From (C) we must

have

(fl~v)(I) = g’(t)d~~(t) = (g o A)(I)

Now

8 — < (q
5 

o A) (I) < ($ — a) (1 +

and

i~i 
- -5-- -- -_ - -  ~~~~~~~•SS- ~~~ -S•-•--5- - - - —-5- - ~~~~— -- - - - - -~~~~- - -- - - 
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~ ((a ,BJ ) I J g
’(t)d~ (t) < ~([&,~ ] )  < 

~ ((a,~~] )  + M (8 - a) ,

where M bounds d~/dA . Letting n -t 
~ in the preceding inequalities,

and noting that the two central terms are equal, we obtain ~ ( [a ,8J ) = B - a

for all (a,B] C I ; i.e., ~ = A

Indeed, we could have replaced (B) with (C) in our original defi-

nition of “value.” Propositions I and II would then have held with “ A “

replacing “ 
~ € NA~bd “ ; their proofs would have required only minor

modifications. With the exception of the argument requiring the Reisz

representation theorem, this would amount to the approach of [11]. 
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